Rings in which every ideal is pure-projective or FP-projective
نویسندگان
چکیده
منابع مشابه
Commutative rings in which every finitely generated ideal is quasi-projective
This paper studies the multiplicative ideal structure of commutative rings in which every finitely generated ideal is quasi-projective. Section 2 provides some preliminaries on quasi-projective modules over commutative rings. Section 3 investigates the correlation with well-known Prüfer conditions; namely, we prove that this class of rings stands strictly between the two classes of arithmetical...
متن کاملF eb 2 00 9 Rings over which all projective ideal is free
In this paper we introduce and investigate a class of those rings in which every projective ideal is free. We establish the transfer of this notion to the trivial ring extension and pullbacks and then generate new and original families of rings satisfying this property.
متن کاملRings for which every simple module is almost injective
We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...
متن کاملFp - Projective Dimensions
Let R be a ring and M a right R-module. Ng (1984) defined the finitely presented dimension f p dim M of M as inf n there exists an exact sequence Pn+1 → Pn → · · · → P0 → M → 0 of right R-modules, where each Pi is projective, and Pn+1 Pn are finitely generated . If no such sequence exists for any n, set f p dim M = . The right finitely presented dimension r f p dim R of R is defined as sup f p ...
متن کاملRelative Fp - Projective Modules #
Let R be a ring and M a right R-module. M is called n-FP-projective if Ext M N = 0 for any right R-module N of FP-injective dimension ≤n, where n is a nonnegative integer or n = . R M is defined as sup n M is n-FP-projective and R M = −1 if Ext M N = 0 for some FP-injective right R-module N. The right -dimension r -dim R of R is defined to be the least nonnegative integer n such that R M ≥ n im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2017
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2017.02.005